

Number of participants /country

Country	2004	2005	2006	2007	2008
Angola	1	1	1	0	1
Botswana	2	2	2	4	2
Ethiopia	1	1	1	0	0
Kenya	2	2	4	3	3
Lesotho	1	1	0	0	1
Madagascar	0	0	2	2	3
Malawi	2	2	2	3	1
Mauritius	1	3	4	3	5
Mozambique	2	3	2	0	0

Country	2004	2005	2006	2007	2008
Namibia	2	2	3	3	3
Republic of Seychelles	1	2	2	1	1
Swaziland	1	1	0	1	2
South Africa	0	0	0	1	1
Tanzania	2	8	5	12	11
Uganda	1	3	6	5	5
Zambia	1	4	2	3	1,
Zimbabwe	2	3	3	5	5
Number of labs participating	22	44	39	46	45

			Pa	aran	nete	ers			
20	04	20	05	20	06	20	07	20	08
Anions	Cations	Anions	Cations	Anions	Cations	Anions	Cations	Anions	Cations
SO4	Ca	SO4	Ca	SO4	Ca	SO4	Ca	SO4	Ca
CI	Mg	CI	Mg	CI	Mg	CI	Mg	CI	Mg
F	Na	F	Na	F	Na	F	Na	F	Na
NO3	ĸ	NO3	ĸ	NO3	ĸ	NO3	ĸ	NO3	ĸ
	Fe	PO4	Fe	PO4	Fe	PO4	Fe	PO4	Fe
	Mn		Mn		Mn		Mn		Mn
	AI		AI		AI		AI		AI
			Pb		Pb		Pb		Pb
			Cu		Cu		Cu		Cu
			Zn		Zn		Zn		Zn
			Cr		Cr		Cr		Cr
			Ni		Ni		Ni		Ni
					As		As		As
			100	-	Cd		Cd		Cd
									Со
Total	11		17		19		19	ALASTA DA	20

Sample bottle preparation II

- Next day check completely dry
- Closed bottles immediately to prevent them from dust
- Store them in the crates until needed

Weighing of wires

- Start of by weighing the different target masses for the 3 levels of each parameter
- Continue with the weighing of the metals where different wires were used

Weighing of the salts

- Continue with weighing of the salts
- Weigh the substances for three levels
- Continue to prepare the stock solution

Preparation of the 200g weighing Weigh the empty container • Weigh the calculated amount of the different • stock solutions Add water into the big • container Add the calculated amount • of the stock solution (by weight) Rinse over in the 100 I • container Fill by weight • NAMMATER

<section-header><list-item><list-item><list-item><list-item>

Folding of boxes II

- Strong packaging was once again a requirement
- Flat cartons needed to be fold into boxes
- Staple it together

NAMWATER

ParameterChemicalPurity %Sample 1Sample 2Sample 3SulphateK2SO499.570.126118.723344.4188
Parameter Chemical Purity % Sample 1 Sample 2 Sample 3 Sulphate K2SO4 99.5 70.1261 18.7233 44.4188
Parameter Chemical Purity % Sample 1 Sample 2 Sample 3 Sulphate K ₂ SO ₄ 99.5 70.1261 18.7233 44.4188
Sulphate K ₂ SO ₄ 99.5 70.1261 18.7233 44.4188
Chloride KCI 99.6 31.5473 69.672 12.598
Fluoride KF 100 0.2054 1.3201 0.9804
Nitrate KNO ₃ 99.3 56.8247 28.0509 9.9669
Phosphate KH ₂ PO ₄ 99.9 3.2029 21.2784 11.3419

Calculated mass - Callons	Ca	lcul	ated	mass	- Cat	tions
---------------------------	----	------	------	------	-------	-------

Parameter	Chemical	Purity %	Sample 4	Sample 5	Sample 6
Calcium	CaCl ₂ .2H ₂ O	99.5	60.2338	8.3455	25.4282
Magnesium	Mg(NO ₃) ₂ .6 H ₂ O	99.5	11.4381	39.8732	18.846
Sodium	NaCl	99.6	80.6041	10.0962	43.7208
Potassium	KCI	99.6	12.3007	17.4761	20.7153
Iron	Fe-Wire	99.95	2.7394	2.0341	0.5379
Manganese	Mn-Powder	99.4	1.5026	5.1096	0.899
Aluminium	Al-wire	99.9995	2.2303	0.8237	4.3905
Lead	Pb(NO ₃) ₂	99.7	3.3057	1.1191	0.5793
Copper	Cu-wire	99.999	0.7036	3.5446	1.0896
Zinc	Zn-wire	99.99995	2.4813	0.8812	4.4332
Chromium	Cr-powder	99.6	0.7725	1.7668	0.4808
Nickel	Ni-wire	99.9975	0.7667	0.5443	3.1043
Arsenic	As ₂ O ₃	99.5	0.1318	0.5782	0.3794
Cadmium	CdCl ₂	99.995	0.7345	0.1195	0.4915
Cobalt	Co-powder	99.6	2.5864	0.9051	2.7127

The samples matrix was pure water. Sample 4, 5 and 6 were constituted as follows with HNO3 acid preservation to a pH 2.1. The final weight for the cation samples was 49.900g with the Density (Deionised water) = 0.998g/ml and the temperature 24.0 °C.

NAMWATER

